Please use this identifier to cite or link to this item: https://une.intersearch.com.au/unejspui/handle/1959.11/1237
Title: Contaminant dispersion at the rehabilitated Mary Kathleen uranium mine, Australia
Contributor(s): Lottermoser, BG (author); Ashley, Paul (author); Costelloe, MT (author)
Publication Date: 2005
DOI: 10.1007/s00254-005-0014-2
Handle Link: https://hdl.handle.net/1959.11/1237
Abstract: This study reports on the transfer of contaminants from waste rock dumps and mineralised ground into soils, sediments, waters and plants at the rehabilitated Mary Kathleen uranium mine in semi-arid northwest Queensland. Numerous waste rock dumps were partly covered with benign soil and the open pit mine was allowed to flood. The mineralised and waste calc-silicate rock in the open pit and dumps has major (> 1 wt%) Ca, Fe and Mg, minor (> 1,000 ppm) Ce, La, Mn, P and S, subminor (> 100 ppm) Ba, Cu, Th and U, and trace (< 100 ppm) As, Ni, Pb, Y and Zn values. Consequently, chemical and physical weathering processes have acted on waste rock and on rock faces within the open pit, mobilising many elements and leading to their dispersion into soils, stream sediments, pit water and several plant species. Chemical dispersion is initiated by sulfide mineral breakdown, generation of sulfuric acid and formation of several soluble, transient sulfate minerals as evaporative efflorescent precipitates. Radiation doses associated with the open pit average 5.65 mSv year⁻¹; waste dumps commonly have lower values, especially where soil-covered. Surface pit water is slightly acid, with high sulfate values accompanied by levels of U, Cu and Ni close to or above Australian water guideline values for livestock. Dispersion of U and related elements into soils and stream sediments occurs by physical (erosional) processes and from chemical precipitation. Plants growing in the mine void, on waste dumps and contaminated soil display evidence of biological uptake of U, LREE, Cu and Th and to a lesser degree of As, Ni, Pb, Y and Zn, with values being up to 1-2 orders of magnitude about background sites for the same species. Although rehabilitation procedures have been partly successful in reducing dispersion of U and related elements into the surrounding environment, it is apparent that 20 years after rehabilitation, there is significant physical and chemical mobility, including transfer into plants.
Publication Type: Journal Article
Source of Publication: Environmental Geology, 48(6), p. 748-761
Publisher: Springer
Place of Publication: Germany
ISSN: 0943-0105
1432-0495
Field of Research (FOR): 040299 Geochemistry not elsewhere classified
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Statistics to Oct 2018: Visitors: 246
Views: 247
Downloads: 0
Appears in Collections:Journal Article

Files in This Item:
4 files
File Description SizeFormat 
Show full item record

Page view(s)

54
checked on Mar 2, 2019
Google Media

Google ScholarTM

Check

Altmetric

SCOPUSTM   
Citations

 

Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.