Please use this identifier to cite or link to this item:
Title: Scope for a random regression model in genetic evaluation of beef cattle for growth
Contributor(s): Meyer, Karin (author)
Publication Date: 2004
DOI: 10.1016/S0301-6226(03)00142-8
Handle Link:
Abstract: Potential improvement in accuracy of genetic evaluation of beef cattle for growth from replacing the current multi-trait (MT) model comprising birth, weaning, yearling and final weights as separate traits, with a random regression (RR) model analysis is examined by simulation. Maintaining the original data and pedigree structure for three beef cattle data sets, data were simulated assuming a cubic regression on polynomials of age for direct and maternal, genetic and permanent environmental effects and heterogeneous measurement error variances. Ages at weighing from birth to 730 days were considered. Data set I represented records from an experimental herd with monthly weighing of animals. Data sets II and III were field data, selecting a subset of herds in which at least 50% of animals had four or more weights recorded and records for all herds for a small breed, respectively. Simulated records were analysed fitting a MT model and RR models. Field data sets were expanded by adding a fictitious weight approximately 3 months after the original records. Accuracy of genetic evaluation was calculated as correlation between true and estimated values for each analysis. For the same subset of data, accuracies from a RR analysis were consistently higher than for a MT analysis, due to more appropriate modelling of variances and genetic parameters. Using all records available, RR accuracies for breeding value estimates for 200, 400 and 600 days in data set I were 0.023–0.034 or 4.3–5.9% higher than for MT. Corresponding gains were 3.1–3.6% for data set II and 1.5–1.7% for data set III. Expanding the field data sets by 100%, increased RR accuracies by 0.027–0.038 over those from MT analyses. While small in absolute terms, this was equivalent to a proportional increase of 5.7–8.3%. Results showed that substantial benefits could be obtained from the implementation of a RR model, if additional weight records were collected.
Publication Type: Journal Article
Source of Publication: Livestock Production Science, 86(1-3), p. 69-83
Publisher: Elsevier Science
Place of Publication: Amsterdam, The Netherlands
ISSN: 0301-6226
Field of Research (FOR): 070201 Animal Breeding
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Other Links:
Statistics to Oct 2018: Visitors: 55
Views: 56
Downloads: 0
Appears in Collections:Journal Article

Files in This Item:
2 files
File Description SizeFormat 
Show full item record


checked on Nov 27, 2018

Page view(s)

checked on Jan 11, 2019
Google Media

Google ScholarTM





Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.